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1 Matroids

Matroids are combinatorial structures that generalise the mathematical notion of dependence, found
in areas such as geometry, graph theory, and linear algebra.

Definition 1.1 (Whitney [17], Chapter 1 of Oxley [8]). A matroid M is an ordered pair (E, I) con-
sisting of a finite set E and a collection I of subsets of E having the following three properties:
(I1) ∅ ∈ I.
(I2) If I ∈ I and I ′ ⊆ I , then I ′ ∈ I.
(I3) If I1 and I2 are in I and |I1| < |I2|, then there is an element e of I2 − I1 such that I1 ∪ e ∈ I.
The members of I are the independent sets of M , and E is the ground set of M . A subset
of E that is not in I is called dependent. A minimal dependent set is a circuit and a maximal
independent set is a basis.

Matroids arise from matrices in the following way.

Proposition 1.2 (Oxley [8, Proposition 1.1.1]). Let E be the set of column labels of an m×n matrix
A over a field F, and let I be the set of subsets X of E for which the multiset of columns labelled
by X is a set and is linearly independent in the vector space V (m,F). Then (E, I) is a matroid.

And from graphs also.

Proposition 1.3. Let E be the edge set of a graph G, and let I be the set of all forests of G. Then
(E, I) is a matroid, denoted M(G).

Another important family of matroids are the uniform matroids.

Proposition 1.4. Let m and n be non-negative integers with m ≤ n. Let E be an n-element set
and let I be the set {X ⊆ E | |X| ≤ m}. Then (E, I) is a matroid, denoted Um,n.

An element e of a matroid M is a loop if {e} is dependent in M . If f and g are elements of M such
that {f, g} is dependent in M , then f and g are parallel in M . A parallel class of M is a maximal
subset X of E(M) such that |X| ≥ 2 and any two distinct members of X are parallel in M and no
member of X is a loop. If M has no loops or parallel classes, then M is simple. If M is a matroid,
then si(M) denotes the simplification of M . The rank of a subset X of E is the cardinality of the
largest independent set contained within X . A simple rank-two subset of E is known as a line, and,
if it has at least three elements, a long line. A three-element circuit is known as a triangle.
For matroids of rank three, we can use a geometric representation to illustrate them. This is a
two-dimensional drawing of points and lines, with a collection of points being independent if and
only if they are not collinear.

Definition 1.5. Let M = (E, I) be a matroid, and let e be a non-loop element of M . Then the
contraction of e from M is the matroid (E\ {e} , {I ⊆ E\ {e} | I ∪ {e} ∈ I}).

2 Introduction

Partial fields were introduced by Semple and Whittle [14]. However, we will follow the treatment
of Van Zwam [16], starting from a ring.

Definition 2.1 (Van Zwam [16]). A partial field is a pair (R,G), where R is a commutative ring,
and G is a subgroup of the group of units of R such that −1 ∈ G.
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If P = (R,G) is a partial field, and p ∈ R, then we say that p is an element of P, denoted p ∈ P, if
p = 0 or p ∈ G. Note that if p, q ∈ P then pq ∈ P, but p+ q need not be an element of P.

Example 1. Consider the partial field U0 = (Z, {−1, 0, 1}), known as the regular partial field. Then
1 · 1 ∈ {−1, 1}, but 1 + 1 /∈ {−1, 1}. ♦

Definition 2.2. A matroid M is said to be representable over the partial field P if there is a
matrix M such that all non-zero subdeterminants of M are in P and a labelling of the columns
of M by E(M) such that any subset {x1, . . . , xk} is independent in M if and only if the submatrix
[x1, . . . , xk] contains a k× k subdeterminant that is non-zero in P. We say that M is a P-matrix, and
that M is a P-matroid.

We are interested in characterising the maximum-sized matroids for classes of matroids repre-
sentable over partial fields.

Definition 2.3 (Kung [6]). Let M be a collection of matroids. A member M of M is extremal in
M if M is simple and there is no single element simple extension of M that has the same rank as
M and is isomorphic to a member of M.
A member M of M is maximum-sized in M if M is simple and every rank-r(M) simple matroid
in M has a groundset that is no larger than the groundset of M .

Characterisations of the maximum-sized matroids representable over various partial fields are al-
ready known.
Recall the regular partial field U0 from Example 1.
Regular matroids capture the property of being representable over both GF (2) and GF (3).

Theorem 2.4 (Tutte [15], Oxley [8, Theorem 6.6.3]). The following statements are equivalent for a
matroid M :

(i) M is regular.
(ii) M is representable over every field.
(iii) M is binary and, for some field F of characteristic other than two, M is F-representable.

The next theorem follows from work done by Heller [4].

Theorem 2.5. Let M be a simple rank-r regular matroid. Then

|E(M)| ≤
(
r + 1

2

)
.

Furthermore, equality in this bound is attained if and only if M ∼=M(Kr+1). �

Definition 2.6 (Kung and Oxley [7], Section 6.10 of Oxley [8]). Let {ω1, . . . , ωn} be a basis of an n-
dimensional vector space over GF (3). The ternary Dowling matroid Qn(GF (3)

∗) is the ternary
matroid of rank n represented by the columns ω1, . . . , ωn and the columns ωi − ωj and ωi + ωj ,
where i < j.

The dyadic partial field is D = (Z[ 12 ], 〈−1, 2〉).
Dyadic matroids capture the property of being representable over both GF (3) and GF (5).

Theorem 2.7 (Whittle [18]). The following are equivalent for a matroid M .
(i) M is dyadic.
(ii) M is representable over GF (3) and GF (5).
(iii) M is representable over GF (p) for all odd primes p.
(iv) M is representable over GF (3) and Q.
(v) M is representable over GF (3) and R.
(vi) M is representable over GF (3) and GF (q) where q is an odd prime power that is congruent

to 2 mod 3.
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The next theorem follows from work done by Kung [5] and Kung and Oxley [7].

Theorem 2.8. Let M be a simple rank-r dyadic matroid. Then

|E(M)| ≤ r2.

Furthermore, equality in this bound is attained if and only if M ∼= Qr(GF (3)
∗). �

The near-regular partial field is U1 = (Z[α, 1
1−α ,

1
α ], 〈−1, α, 1− α〉), where α is an indeterminate.

Near-regular matroids capture the property of being representable over GF (3), GF (4), and GF (5).

Theorem 2.9 (Whittle [18]). The following are equivalent for a matroid M .
(i) M is near-regular.
(ii) M is representable over GF (3) and GF (8).
(iii) M is representable over GF (3), GF (4), and GF (5).
(iv) M is representable over GF (3), GF (4), and Q.
(v) M is representable over all fields except possibly GF (2).

The sixth-roots-of-unity ( 6
√
1) partial field is S = (Z[ζ], 〈ζ〉), where ζ is a root of x2 − x+ 1.

Sixth-roots-of-unity matroids capture the property of being representable over GF (3) and GF (4).

Theorem 2.10 (Whittle [18]). The following are equivalent for a matroid M .
(i) M is a 6

√
1-matroid.

(ii) M is representable over GF (3) and GF (4).
(iii) M is representable over GF (3) and GF (2k) for some even integer k.

Maximum-sized characterisations for both near-regular and 6
√
1 matroids were provided by Oxley,

Vertigan, and Whittle [9], using the following two results. The matroid T 1
r is obtained by adding a

point freely on a three point line of M(Kr+2), contracting that point, and simplifying the resulting
matroid.

Theorem 2.11. Let M be a simple rank-r 6
√
1-matroid. Then

|E(M)| ≤

{(
r+2
2

)
− 2 if r 6= 3;

9 if r = 3.

Moreover, equality is attained in this bound if and only if M ∼= T 1
r , when r 6= 3, or M ∼= AG(2, 3)

when r = 3. �

Corollary 2.12. Let M be a simple rank-r near-regular matroid. Then

|E(M)| ≤
(
r + 2

2

)
− 2.

Moreover, equality is attained in this bound if and only if M ∼= T 1
r . �

There are an infinite number of maximum-sized characterisations for classes of matroids, as the
maximum-sized rank-r matroid representable over the fieldGF (q) is the projective geometry PG(r−
1, q).
As these results show, the maximum-sized matroids that are representable over all the fields in a
subset of {GF (2), GF (3), GF (4), GF (5)} have all been characterised, apart from the maximum-sized
matroids representable over GF (4) and GF (5), which we now discuss.
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Figure 1: The Betsy Ross

Figure 2: D3

3 Maximum-sized Golden-mean Matroids

Definition 3.1. The golden-mean partial field, denoted G, is (Z[φ], 〈−1, φ〉), where φ is the positive
root of x2 − x− 1. A matroid is golden-mean if it has a G-representation.

The following theorem is an unpublished result of Vertigan. In his masters thesis, Semple [11]
proved that (ii) implies (iii). For a proof, see Pendavingh and Van Zwam [10, Theorem 1.3].

Theorem 3.2. Let M be a matroid. The following are equivalent:
(i) M is representable over both GF (4) and GF (5);
(ii) M is golden-mean;
(iii) M is representable over GF (p) for all primes p such that p = 5 or p ≡ ±1 mod 5, and also

over GF (p2) for all primes p. �

The Betsy Ross matroid, or B11, was introduced by Brylawski and Kelly [2]. It was shown by Semple
[11] that B11 is an extremal rank-three golden-mean matroid. Using computer software, Archer [1]
was able to show that B11 is the unique maximum-sized rank-three golden-mean matroid.
A geometric representation for B11 is given in Figure 1. It has the following G representation.1 0 0 1 1 0 0 1 1 1 1

0 1 0 1 φ 1 1 0 0 φ φ2

0 0 1 1 φ2 1 φ −φ 1 1 φ2


We now introduce the three infinite families of golden-mean matroids that form the basis of this
research. The T 2

n family was introduced by Semple [12], and the other two were introduced by
Archer [1].
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Figure 3: T 2
3

Figure 4: HP3

Let Dm denote the m×
(
m
2

)
matrix whose columns consist of all m-tuples with two non-zero entries,

with the first being 1 and the second being −1. Let 0nm denote the n×m matrix consisting entirely
of zeroes. Let I0m denote the m× (m+ 1) matrix [Im|0]. Let k = n− 2.
The first family is the T 2

n family, a representation of which is given below. A geometric represen-
tation of T 2

3 is given in Figure 3.
1 0 · · · 0 1 · · · 1 φ · · · φ φ2 · · · φ2 0 · · · 0
0
... In−1 In−1 In−1 In−1 Dn−1
0


The second family is the Dn family, a representation of which is given below. A geometric repre-
sentation of D3 is given in Figure 2.

−φ −φ −φ 0 · · · 0 φ · · · φ 1 · · · 1 0 · · · 0 0 · · · 0 0 · · · 0
1 φ φ2 0 · · · 0 0 · · · 0 0 · · · 0 φ · · · φ 1 · · · 1 0 · · · 0

0k3 Ik Ik I0k Ik I0k Dk


The third family is the HPn family, a representation of which is given below. A geometric repre-
sentation of HP3 is given in Figure 4.

0 · · · 0 −1 1 · · · 1 0 · · · 0 φ · · · φ 1 · · · 1 0 · · · 0
0 · · · 0 φ 0 · · · 0 φ · · · φ φ · · · φ φ2 · · · φ2 0 · · · 0

I0k I0k I0k I0k I0k Dk
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In his PhD thesis, Archer [1] put forward the following conjecture.

Conjecture 3.3 (Archer, 2005). Let M be a maximum-sized golden-mean matroid. If r(M) = 3
then M ∼= B11, otherwise M is isomorphic to one of Dr(M), HPr(M) or T 2

r(M).

The proof of this conjecture is the aim of this research.

4 Proof Progress

In this section, we list, without proof, all the intermediate steps in the proof of this conjecture that
have already been completed.
To prove this conjecture, we are using induction on the rank of M , our maximum-sized golden-
mean matroid. The base case is rank three, which is covered by the following Lemma, proven by
an exhaustive computer search.

Lemma 4.1. Let M be a simple golden-mean matroid of rank three. Then M is isomorphic to a
restriction of one of the following matroids:
I The Betsy Ross,
I HP3,
I G10,
I T 2

3 , or
I D3.

The next task was to characterise the spikes representable over the golden-mean partial field. These
are used to construct contradictions in proofs of various lemmas later in the proof.

Definition 4.2 (Ding et al. [3]). For n ≥ 3, a simple matroid M is an n-spike with tip t if it satisfies
the following properties.

(i) the ground set is the union of n lines, L1, . . . , Ln, all having three points and passing through
a common point t;

(ii) for all k in {1, . . . , n− 1}, the union of any k of L1, . . . , Ln has rank k + 1; and,
(iii) r(L1 ∪ · · · ∪ Ln) = n.
We will refer to an n-spike with tip t as an n-spike. Each line of a spike is known as a leg.

Lemma 4.3. There are no golden-mean 5-spikes.

Lemma 4.4. There are only two golden-mean 4-spikes.

Lemma 4.5. If M is a golden-mean 4-spike with tip t, M ′− e =M , where M ′ is golden-mean, and
{e, a, b} is a triangle, where {a, b} is a leg of M , then {t, e} is a circuit.

Another result required is the collection of all regular or near-regular matroids with no circuits
of size greater than four. The graph K+

2,x is the complete bipartite graph K2,x, with an extra edge
joining the two vertices in the partition of size two. The matroid K]

2,x is obtained by freely adding
a point to every three-point line in M(K+

2,x).

Lemma 4.6. If M is a simple connected near-regular matroid with no circuit of size greater than
four, then M is either a restriction of T 3

1 or K]
2,x, for some x.

Corollary 4.7. If M is a connected regular matroid and M has no circuit of size greater than
four, then either si(M) ∼=M(K4), or si(M) ∼=M(K2,b) for some b, or si(M) ∼=M(K+

2,b) for some b.

Some connectivity lemmas are also needed.

Lemma 4.8. Let M be a minimal counterexample to Conjecture 3.3. Then M is 2-connected.
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Lemma 4.9. Let M be a minimal counterexample to Conjecture 3.3. Then M is 3-connected.

Lemma 4.10. Let M be a minimal counterexample to Conjecture 3.3. Then M is vertically 4-
connected.

The proof really starts with these results. It can be broken into a few cases:
I There is some element in M such that M/e is regular.
I M does not fall under the first case, and there is some element inM such thatM/e is near-regular.
I M does not fall under one of the first two cases.
The first case has been completed, the second case is partially done, and the third case has a strategy
mapped out.
The first case was able to use the existing techniques, such as those used by Oxley, Vertigan, and
Whittle [9] and Semple [13]. The next seven results sum up this case.

Definition 4.11. Let M be a matroid, and let e be an element of M , and let L be the set of the
long lines of M . Let X = {e}∪{f ∈ E(M) | ∃L ∈ L with e, f ∈ L}. Then L(M, e) is defined to be the
matroid obtained from restricting M to X , contracting e, and then simplifying.

Corollary 4.12. Let M be a minimal counterexample to Conjecture 3.3. If there exists at least
one e ∈ E(M) such that M/e is regular, then L(M, e) has no circuits of size greater than four.

Corollary 4.13. Let M be a minimal counterexample to Conjecture 3.3. If there exists at least
one e ∈ E(M) such that M/e is regular, then L(M, e) consists of copies of M(K4), M(K2,b), and
M(K+

2,d) in addition to a (potentially empty) collection of U1,1’s.

Lemma 4.14. Let M be a minimal counterexample to Conjecture 3.3. If there exists at least one
e ∈ E(M) such that M/e is regular, then L(M, e) is a collection of U1,1’s.

Corollary 4.15. Let M be a minimal counterexample to Conjecture 3.3, and let e ∈ E(M) be a
point such that M/e is regular. Then there are exactly r − 1 lines through e, all of length five.

Lemma 4.16. Let M be a minimal counterexample to Conjecture 3.3. If there exists at least one
e ∈ E(M) such that M/e is regular, then si(M/e) ∼=M(Kr).

Lemma 4.17. Let M be a minimal counterexample to Conjecture 3.3. If there exists at least one
e ∈ E(M) such that M/e is regular, then any two elements in L(M, e) will be on a triangle in
si(M/e).

Lemma 4.18. Let M be a rank-r minimal counterexample to Conjecture 3.3 with a point e such
that M/e is regular. Then M ∼= T 2

r .

These results show that in the first case, Conjecture 3.3 holds.
Before heading into the next case, we needed some more results about L(M, e). The existing
techniques do not work with this case as readily as they do with the previous case. We slowly
reduce the possible components of L(M, e) until we’re left with two configurations that we can then
use to prove the rest of the conjecture. The next fifteen results outline this procedure.

Lemma 4.19. Let M be a minimal counterexample to Conjecture 3.3 such that M/e is not binary.
Then there can only be one five-point line going through e.

Lemma 4.20. Let M be a minimal counterexample to Conjecture 3.3, and let e be a point of M .
Then L(M, e) is near-regular.

Corollary 4.21. Let M be a minimal counterexample to Conjecture 3.3, and let e be a point of
M . Then the connected components of L(M, e) are restrictions of either T 1

3 or K]
2,x, for some x.

P5 is a rank-three matroid consisting of a three-point line and two points in space.
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Lemma 4.22. L(M, e) cannot have P5 as a minor.

Corollary 4.23. Let M be a minimal counterexample to Conjecture 3.3, and let e be a point of
M . Then the non-regular connected components of L(M, e) are isomorphic to U2,4.

Lemma 4.24. The possible components of L(M, e) are:
I M(K2, d), for some d.
I M(K4).
I M(K+

2,b), for some b.
I U2,4.
I U1,1.

In a minimal counterexample to Conjecture 3.3, we are required to lose a certain number of points
on contraction, by induction. This implies a lower bound on |L(M, e)|. Forbidden configurations in
L(M, e) imply an upper bound. We compare these bounds, using the deficit, which measures the
gap between the bounds, and find two solutions.

Lemma 4.25. The minimum deficit of M(K2,d) is 2.

Lemma 4.26. The minimum deficit of M(K4) is 0.

Lemma 4.27. The minimum deficit of M(K+
2,b) is −1. Furthermore, if the deficit is −1, then there

is a five-point line.

Lemma 4.28. The minimum deficit of U2,4 is 0.

Lemma 4.29. The minimum deficit of U1,1 is −1.

The weight of a point is the length of the line going through e and that point in M .

Lemma 4.30. If one of the components of L(M, e) is a M(K+
2,b) with the “tip” being weighted four

or five, then every other point in L(M, e) is weighted three.

Lemma 4.31. If there exists a point in L(M, e) with weight five, then there can be no U2,4 com-
ponents.

Lemma 4.32. If there exists a point in L(M, e) with weight five, then there can be no M(K4)
components.

Lemma 4.33. The two possible configurations of L(M, e) are:
I A collection of U1,1’s, one with a weight of five, and the rest with weights of four.
I A solitary M(K+

2,r−2).

The second case (M/e is near-regular) can now be broken into two natural sub-cases from Lemma
4.33. The first subcase, where L(M, e) consists of a collection of U1,1’s, has been completed. The
next five results outline this process.

Lemma 4.34. In the case where L(M, e) is a collection of U1,1’s, L(M, e) forms a basis of M/e.

Lemma 4.35. If a basis of T 1
n has a fundamental circuit of size greater than three, then this

cannot occur in M/e, inside the case where L(M, e) is a collection of U1,1’s.

Lemma 4.36. The only basis of T 1
n with all fundamental circuits having size three is equivalent

to the standard basis from [9].

Lemma 4.37. The U1,1 weighted five is associated with the “tip” of T 1
n .

Lemma 4.38. In this case, M is isomorphic to Dr .

Therein lies the current state of progress towards this conjecture.

8



5 Future Work

The next target is to consider the second subcase of the near-regular case, namely, that L(M, e) is a
solitary M(K+

2,r−2). This case appears to lead to both the Dr family and the HPr family of matroids,
depending on how L(M, e) is embedded into M/e.
Beyond this, there is the final case to consider – when M/e is never near-regular. We intend to use a
limited notion of a property called “roundedness” to prove this case, which should be contradictory.
The main difficulties in proving this conjecture, when compared to the other maximum-sized char-
acterisations for partial-field matroids are:

1. The three families (as opposed to only one). This increases the complexity and number of the
cases, forcing us to come up with new techniques to tackle the conjecture.

2. Lack of unique-representability. This is not a major problem, as there is a workaround that I
am currently exploiting. However, this workaround is not very attractive and leads to a less
attractive proof. If there is time remaining after proving this conjecture, it is feasible that I
will look into this problem.
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